2014-2015 Concrete Canoe

Dreadnoughtus

HIGH ALTITUDE ENGINEERING:

RAMON AGUILAR, CYNTHIA ALVAREZ, JEREMY DEGEYTER, MATT SNYDER, AND KRISTIN VAN SCIVER

Project Description

- Participate in ASCE Pacific Southwest Region Conference (PSWC)
 - Design, construct, and race a concrete canoe
 - Judged on design paper, oral presentation, final product, and five races
 - Selected theme of dinosaurs
- Last year's Concrete Canoe Team "Spirit" finished 13th out of 18 at PSWC 2014 held in San Diego, California

Project Description

- Limitations of money, personnel, and time
- Maximum dimensions of 22' length and 36" width
- No hollow cavities or air bladders allowed
- Minimum reinforcement percent open area (POA) of 40%
- No 3D analysis allowed for conference

Project Management

- Jeremy DeGeyter Project Manager
- Matt Snyder Structural Analysis Lead
- Kristin Van Sciver Concrete Lead
- o Cynthia Alvarez Reinforcement Lead
- Ramon Aguilar Quality Control and Safety Officer

Hull Design

Figure 1: Basic Concrete Canoe Terminology

Hull Design

- o Shallow Arch Bottom
- o 5-in rocker
- o 21-ft long, 27-in wide
- Analyzed through Prolines Software
 - Optimum Speed 5.4 knots (6.2mph)

Non-rockered canoe

[4] Figure 2: What is a "Rocker"

[5] Figure 3: Prolines Hull Model

Structural Analysis

- o Compressive stress of 340-psi
- o Tensile stress of 120-psi
- Max moment of 4-lbin/in
 - Four person loading analysis
 - Transverse direction
- Capacity of 30-lbin/in
 - Based on one layer reinforcement
 - Does not include ribs
- o **3-D analysis**
 - Verified 2-D Results

Post-Tensioning

- Provides 690-lbs of axial compression to increase flexural cracking load
- Six-7x7 galvanized steel tendons were placed symmetrically about the centroid
- Designed for 115-lbs of tension after calculated losses

Figure 7: Anchorage System

Figure 8: Post-Tensioning Net

• Tested four different materials

- Strength and Elongation
- Selected Parex Glass Fiber Reinforcing Mesh
- o Development length tests
 - 6-inch, 4-inch, and 2-inch

Concrete Mix

o Constituent selection

- Five lightweight aggregates considered
- Poraver[®] P051 and 3M S32 Glass selected
- EkkoMAXX selected for cementitious binder
- o EkkoMAXX
 - Sustainable alternative to Portland cement
 - 100% fly ash based
 - Resistant to chemical attack
 - Reduced shrinkage

Concrete Mix

• Mix design alternatives

- Batched 25 different mixes varying proportions of each constituent
- Tested each for compressive strength and slump
- After final mix selected, tested for tensile, flexural, shrinkage, and air content

Figure 9: Compressive Test

Figure 10: Tensile Test

Figure 11: Flexural Test

Figure 12: Shrinkage Test

Concrete Mix

• Final mix proportions by volume :

- EkkoMAXX [24%]
- Poraver (0.5mm-1mm) [36%]
- 3M Glass Bubbles (S32) [22%]
- MasterFiber M 100 [<1%]
- Air MB-AE 90 AEA [3%]
- Water [15%]

Table 3: Final Mix Properties

Final Concrete Structural Mix:				
Wot/Dry Unit Woight	65.5/57.4			
wei/Dry Omt weight	pcf			
28 Day Compressive	2150 psi			
Strength	_ 100 poi			
28 Day Tensile Strength	225 psi			
28 Day Flexural	725 psi			
Strength				
Air Content	2.80%			
Shrinkage	0.03%			
Slump Flow	7" ± 1"			

Mold Construction

Figure 13: Cross-Section Cutout

Figure 14: Hot-Wire Cutting

Figure 15: Gluing Cross-Sections

Figure 16: Finished Foam Mold

Figure 17: Spraying Concrete Layers

Figure 19: Placing Post-Tensioning

Figure 18: Troweling Concrete Layers

Figure 20: Placing Reinforcement Mesh

Curing and Finishing

Figure 21: Curing Frame

Figure 23: Grinding/Polishing

Figure 22: Curing Tent

Figure 24: Staining

Figure 25: Silicone Rib Mold

Figure 26: Rib in Canoe

Figure 27: 3D Elements in Bulkhead

Figure 28: Arizona Flag Stain

Figure 29: Flagstaff Night Sky Stain

Conference Results

 3rd place overall in Canoe, best NAU finish in 15 years! Figure 30: Collage of Final Product Display

rthern Arizonn University

Oreadnoughtus Versity

- \circ 1st in Final Product
- o 3rd in Oral Presentation
- \circ 3rd in Men's Sprint

Northern Arizona University

Pictures taken by Charlie Wilson & Canoe Team

Direct Impacts

- Implemented sustainable/reused surplus materials
- o Fabricated reusable mold
- Exposure to fumes, particles, and tools
- Renewed interest in Canoe Competition

Figure 31: Group Picture After Race Day

Figure 32: Paddling Practice

Cost of Design and Implementation

Table 4: Cost of Project

1.0 Personnel	Classification	Hours	Rate, \$/hr	Cost
	SENG	325	100	\$32,500
	ENG	1006	80	\$80,480
	LAB	476	62	\$29,512
	INT	1146	52	\$59,592
	Total Personnel	2953		\$202,084
2.0 Travel	Lodging/Food	per person	250	\$1,250
	Registration	per person	120	\$600
	Van Rental	per day	56	\$280
	Total Travel			\$2,130
3.0 Direct Costs	Materials			\$6,455
	Total Direct			\$6,455
	Costs			
4.0 Total				\$210,669

Dreadnoughtus

Figure 33: Final Dreadnoughtus Setup

Acknowledgements

Mentees

Evan Kaichi Chelsie Kekaula Brent Lipar Emily Melkesian

Instructors/Advisors

Thomas Nelson Mark Lamer Dr. Robin Tuchscherer

Special Thanks To

Rachel Soqui Cody Elliott Dillon Corrington David Finley Robert Hoppe Braedan Hinojosa Jacob Hood Charlie Wilson Ariel Suarez Constantin Ciocanel

FELTENGROUP

Acknowledgements

Sponsors

Jerry and Iris Frieling John and Lynn Brennard Krista Stuart Martha McMaster The DeGeyter Family Jeremy Laipple The Story Family Marcus Custodio **Caryn Hughes Douglas and Janet Dunipace** Calvin Ing **Bruce Connolly Chun-Hsing Jun Ho**

Andrea Keller The Van Sciver Family John Bergman John and Mary Capehart **Dorian and Paula Brown** Ben and Veronica Madey George Fouts Sandra Fouts Karen Moore Lavicie Runkle The Alvarez Family The Snyder Family Mark Lamer

- [1] Dreadnoughtus: A New Giant Joins the 'Biggest Dinosaur' Parade (NBC News) http://www.nbcnews.com/science/science-news/dreadnoughtus-new-giant-joins-biggestdinosaur-parade-n195306
- o [2] ASCE, and NCCC. 2015 ASCE National Concrete Canoe Competition Rules & Regulations.
- [3] Figure 1 modified from http://www.realmagick.com/canoe-the-parts-of-a-canoe/ & http://www.oldtowncanoe.com/canoes/recreation/stillwater_14/
- [4] Figure 2 provided from https://reflectionsoutdoors.wordpress.com/category/generaloutdoors-2/page/12/
- [5] Figure 3 provided by Matt Snyder
- [6] Poraver North America (2011). Technical Data Sheet, Various Poraver[®] Granular Sizes, <
 http://catalog.agsco.com/Asset/PoraverTech(eng).pdf> (Sep. 15, 2014)
- [7] 3M Center (2013). Technical Data Sheet, 3M[™] Glass Bubbles K Series, S Series and iM Series
 http://multimedia.3m.com/mws/media/910490/3m-glass-bubbles-k-s-and-im-series.pdf
 (Sep. 15, 2014)

